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A Critique of the Structure 
of U.S. Elementary School 
Mathematics
Liping Ma

R
esearch in mathematics education can 
be partitioned in many ways. If research 
in elementary mathematics education 
is partitioned into just two categories, 
content and method, this article may 

seem to belong only to the latter. It argues that 
consideration of the way in which the content of el-
ementary mathematics is organized and presented 
is worthwhile for both U.S. and Chinese elementary 
mathematics educators. But, as illustrated in this 
article, organizing structure may affect the content 
that is presented.

Two distinguishing features of organizing struc-
tures for elementary mathematics are categoriza-
tions of elementary mathematics content and the 
nature of the relationship among the categories. 
These features are illustrated by the two examples 
in Figure 1 below.

Example A has a “core-subject structure”. The 
large gray cylinder in the center represents school 
arithmetic. Its solid outline indicates that it is a 

“self-contained subject”. (The next section of this 
article elaborates the meaning of this term.) School 
arithmetic consists of two parts: whole numbers 
(nonnegative integers) and fractions (nonnegative 
rational numbers). Knowledge of whole numbers 
is the foundation upon which knowledge of frac-
tions is built. The smaller cylinders represent the 
four other components of elementary mathemat-
ics, shown according to the order in which they 
appear in instruction. These are: measurement 
(M); elementary geometry, simple equations (E); 
and simple statistics (S). (The last is similar to the 
U.S. “measurement and data” and includes tables, 
pie charts, line graphs, and bar graphs.) The dot-
ted outlines and interiors of these components 
indicate that they are not self-contained subjects. 
The sizes of the five cylinders reflect their relative 
proportions within elementary mathematics, and 
their positions reflect their relationship with arith-
metic: arithmetic is the main body of elementary 
mathematics, and the other components depend 
on it. Each nonarithmetic component occurs at a 
stage in the development of school arithmetic that 
allows the five components to interlock to form a 
unified whole.

Example B has a “strands structure”. Its com-
ponents are juxtaposed but not connected. Each 
of the ten cylinders represents one standard in 
Principles and Standards for School Mathematics. 
The content standards appear in the front, and 
the process standards appear in the back. No self-
contained subject is shown. This type of structure 
has existed in the U.S. for almost fifty years, since 
the beginning of the 1960s. Over the decades, the 
strands have been given different names (e.g., 
“strands”, “content areas”, or “standards”) and 
their number, form, and content have varied many 
times.

In these two structural types, the main differ-
ence is that the core subject structure has a self-
contained subject that continues from beginning 
to end. In contrast, the strands structure does not, 
and all its components continue from beginning 
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Figure 1. Two organizations of elementary school 
mathematics.
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measurement occupies 36 pages, elementary                                                               
geometry 135 pages, simple equations 23 pages, 
simple statistics 18 pages, and 37 pages are for 
abacus.4 All the nonarithmetic content (including 
abacus) is only 18.4 percent.

The second feature visible in Figure 2 is the 
relationship between arithmetic and nonarithme-
tic content. Please note the insertion points for 

to end of elementary mathematics in-
struction. School arithmetic, the core 
subject in Figure 1A, does not appear 
as a category in Figure 1B.

U.S. elementary mathematics used 
to have a structural type like that of 
Example A. However, in the 1960s it 
began to change radically, eventually 
acquiring the structural type illus-
trated by Example B. The next two 
sections describe the features, origins, 
and evolution of these two structural 
types.

Core-Subject Structure: Features, 
Origin, and Evolution

Notable Features of Example A
Because I was not able to obtain the 
pre–2001 Chinese mathematics educa-
tion framework, the details shown in 
Figure 2 are drawn from a set of Chi-
nese elementary textbooks published 
in 1988.1 The main part of Figure 2 is 
school arithmetic, the content of the 
gray cylinder in Figure 1A. The large 
rectangle shows arithmetic instruc-
tion beginning at the bottom in grade 
1 and continuing upward to grade 6. 
Light gray indicates whole number 
content, and dark gray indicates frac-
tion content (including decimals, ratio, 
and proportion).

The small boxes at the right represent the 
remaining four components: measurement (M), 
elementary geometry (G), simple equations (E), 
and simple statistics (S). Their placement indicates 
their order in instruction. The arrows indicate 
when each nonarithmetic section occurs relative 
to arithmetic instruction.

The dotted vertical lines at the left and numbers 
beside them indicate the grades in which the topics 
occur. The white rhombus indicates the end of the 
first semester; the black rhombus indicates the end 
of the school year.2

Next we will discuss the features of Exam- 
ple A that are visible in Figure 2.

The first feature is the large portion of the fig-
ure occupied by arithmetic. Together the twelve 
textbooks used for grades 1 to 6 have 1,352 pages.3 
Arithmetic occupies 1,103 pages, which is 81.6 
percent of the total. As for other components, 

1In 1988 China had several series of elementary math-
ematics textbooks. This series was one of the most widely 
used and was produced by writing groups from Beijing, 
Tianjin, Shanghai, and Zhejiang. The organizing struc-
ture discussed in this section was common to all the text-
book series used in China.
2The school year in China has two semesters, each about 
twenty weeks long. 

3Please notice the differences between Chinese and U.S. 
elementary mathematics textbooks. The series of textbooks 
for six years has twelve small books, one book for each 
semester. All their content is considered essential rather 
than optional. On average, each book in the series has 
113 pages, with page dimensions of 8 inches by 6 inches. 
Of all these books, only the first uses color and that oc-
curs on only two pages. Each student gets his or her own 
set of textbooks. In contrast, in the U.S. an elementary 
mathematics textbook for one year often has about six 
hundred pages, frequently uses color, and has pages ap-
proximately twice the size of the Chinese textbook pages. 
In general, the textbooks are the property of the school 
district rather than the student, and students are not able 
to bring the textbooks home.
4There are two sections devoted to abacus instruction. 
The first, on addition and subtraction, occurs during the 
last unit of the first semester of grade 4. The second, on 
multiplication and division, occurs during the last unit 
of the first semester of grade 4. In order to simplify Fig- 
ure 2, these are not shown.

Figure 2.  A pre-2001 organization of school mathematics in China.
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by the arithmetic content that precedes it but, at 
the same time, reinforces that arithmetic content. 
In general, each section of nonarithmetic content 
occurs when arithmetic learning has arrived at a 
stage that prepares students to learn that con-
tent. For example, the section on units of Chinese 
money occurs immediately after “Numbers up 
to 100: addition and subtraction”. At that point, 
students have acquired significant knowledge of 
numbers within 100 and are able to add and sub-
tract these numbers. That forms the foundation 
for students to learn the units of Chinese money. 
(Chinese money has three units: fen, yuan, jiao: 
1 yuan is 10 jiao, 1 jiao is 10 fen; thus 1 yuan is 
100 fen.) At the same time, learning the units of 
Chinese money provides students a new perspec-
tive on the arithmetic that they have just learned, 
allowing them to review and consolidate their prior 
learning. Similarly, because reading an analogue 
clock relies on multiples of 5, the section on units 
of time allows students the opportunity to apply 
the multiplication that they have just learned and 
reinforce this knowledge.

The four nonarithmetic components appear 
consecutively except for one short overlap. The 
first component is measurement, which consists 
of seven instructional sections, all of which occur 
before third grade. Next is elementary geometry, 
which is formed by eight sections, distributed 
from third grade to sixth grade. At the end of 
the first semester of fifth grade, the component 
simple equations occurs. This component has only 
one section and occurs between two sections of 
elementary geometry. After geometry, almost at 
the end of sixth grade, simple statistics occurs. 
This kind of arrangement ensures that one type 
of nonarithmetic content is finished before a new 
type begins.

The third notable feature is that the sizes of 
the nonarithmetic components are different. If we 
consider the total nonarithmetic content as 100 
percent, their sizes are, from greatest to small-
est: elementary geometry (64 percent), measure-
ment (17 percent), simple equations (11 percent), 
simple statistics (8 percent). That means that the 
core-subject structure doesn’t treat nonarithmetic 
components equally but emphasizes some more 
than others. The one receiving most emphasis is el-
ementary geometry. In fact, if the measurement of 
length in the measurement component is counted 
as part of elementary geometry, then elementary 
geometry occupies even more than 64 percent. 
This noticeable emphasis on elementary geometry 
is associated with the mathematical content of 
middle school. In elementary school, arithmetic 
prepares the foundation for learning algebra, and 
elementary geometry prepares the foundation for 
learning geometry.

In summary, if considered individually, the sec-
tions shown in Figure 2 may not seem remarkable 

nonarithmetic content indicated by arrows. We can 
perceive the thirty sections of arithmetic in Fig- 
ure 2 as several larger chunks, each with its own 
mathematical unity. That unity is supported by 
instructional continuity; that is, within a chunk, 
consecutive sections of arithmetic content occur in 
instruction without interruption from nonarithme-
tic content. For example, the first thirty weeks of 
instruction consist only of arithmetic—numbers 0 
to 10 and their addition and subtraction, followed 
by numbers from 11 to 20 and their addition and 
subtraction (including regrouping), followed by 
numbers to 100 and their addition and subtrac-
tion. These three sections are tightly connected, 
supporting students’ learning of numbers less than 
100 and their addition and subtraction, thus laying 
a solid cornerstone for later learning. Another uni-
fied chunk is formed by the section on divisibility 
to the section on percents, allowing students to 
learn the four operations with fractions (which is 
difficult) without interruption. Moreover, in the 
twelve semesters of the six years, ten semesters 
start with arithmetic, and nonarithmetic content 
occurs at the end of the semester. In this organiza-
tion, arithmetic is noticeably emphasized.

The third feature visible in Figure 2 is the order-
ing of the instructional sections. This order attends 
to both mathematical relationships among calcu-
lation techniques and considerations of learning. 
For example, the first three sections of grade 1 are 
ordered by calculation technique. If technique were 
the sole consideration, these would be immediately 
followed by addition and subtraction of numbers 
less than 1000. However, in the textbook the fourth 
and fifth sections are on multiplication tables and 
using multiplication tables to do division. Learning 
multiplication tables and doing division with them 
allows students to continue their study of num-
bers up to 100 with a new approach. That is very 
beneficial for creating a solid foundation for el-
ementary mathematics learning. Another example: 
after the section “Fractions: the basic concepts”, 
the textbook does not immediately continue with 
“Fractions and operations”. Instead it has a section 
on decimals. Calculation techniques for operations 
with decimals are very similar to those of whole 
numbers, but the concept of decimals is a special 
case of the concept of fractions. This arrangement 
affords understanding of the concept of decimals, 
review of the four operations with whole numbers, 
and preparation for future learning of fractions, 
their properties, and operations with fractions. 
(Note that this organization affords but does not 
guarantee this understanding. Curriculum design 
and instruction also need to be consistent with 
this goal.)

There are also three features worth noting about 
the nonarithmetic sections shown in Figure 2. First, 
in the whole process of elementary mathematics 
learning, the nonarithmetic content is supported 
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arithmetic is self-contained in the sense that each 
of its concepts is defined in terms of previous con-
cepts, tracing back to the starting point, the unit 1. 
The concepts in the system are sufficient to explain 
the algorithms for the four operations on whole 
numbers and fractions that elementary students 
learn. With this definition system, we cannot only 
make coherent explanations for operations with 
whole numbers and fractions but can also analyze 
fairly complicated quantitative relationships using 
the definitions of the system. For example, the 
problem given on the tomb of the famous math-
ematician Diophantus can be solved using such 
an analysis.8 The elementary students who learn 
operations with whole numbers and fractions with 
this definition system master the algorithms for 
computation while learning abstract thinking. The 
definition system of school arithmetic is the main 
part of the theory of school arithmetic. In China 
and some other countries, this system of defini-
tions still underlies instruction for operations with 
whole numbers and fractions.9

Judging Whether a Country’s School Arithmetic 
Has an Underlying System of Definitions
How can one judge whether a country has a 
definition system unifying its school arithmetic? 
The following problem can provide an efficient 
test. Moreover, by showing the complexity of the 
quantitative relationships that can be analyzed, it 
illustrates the intellectual power of school arith-
metic with an underlying definition system.

A few years ago the field of U.S. mathematics 
education experienced a small shock from a word 
problem in a fifth-grade Singapore textbook.

Mrs. Chen made some tarts. She sold 
3/5 of them in the morning and 1/4 of 
the remainder in the afternoon. If she 
sold 200 more tarts in the morning 
than in the afternoon, how many tarts 
did she make?10

or interesting. However, when their interrelation-
ships are considered, these sections are revealed 
as a tightly connected, carefully designed six-year-
long path for learning mathematics. 
Essential Feature of Core-Subject Structure: 
An Underlying Theory
If Chinese elementary mathematics had only the 
features visible in Figure 2, it would not deserve 
the label “core-subject structure”. These features 
do not indicate whether the school arithmetic 
shown is a collection of skills or a self-contained 
subject with principles similar to those of the dis-
cipline of mathematics. The latter is true: there is 
a theory of school arithmetic that underlies the 
topics in the gray column of Figure 2.

The precursor of school arithmetic was “com-
mercial mathematics”, which existed in Europe 
for several hundred years after Arabic numbers 
were introduced. Its content was computational 
algorithms without explanations.5 In the mid-
nineteenth century, with the movement toward                                                               
public education in the U.S. and Europe, mathemat-
ical scholars participated in producing elementary 
school arithmetic textbooks.6 Their exemplar was 
Euclid’s Elements, the most influential mathemat-
ics textbook in history. These scholars followed 
the approach of the Elements, striving to establish 
a system of definitions for operations with whole 
numbers and fractions. Near the end of the nine-
teenth century this system was almost complete. 
Interestingly, although this system is fairly exhaus-
tive, China did not contribute to its construction. 
On the contrary, in the U.S. elementary mathemat-
ics textbooks of the late nineteenth century, we 
see the efforts and contributions of U.S. scholars.

Rather than starting from self-evident geo-
metrical concepts such as line and point as Euclid 
did, these scholars began with the self-evident 
concept of unit to create a definition system for all 
of school arithmetic. For example, relying on the 
definition of unit 1, two basic quantitive relation-
ships—the sum of two numbers and the product of 
two numbers—are defined. The operations of ad-
dition and subtraction are defined in terms of the 
former, and multiplication and division in terms 
of the latter.7 With this definition system, school 

5As Keith Devlin points out in Chapter 4 of his book The 
Man of Numbers, although Fibonacci provided explana-
tions based on the Elements in his Liber Abaci, “how-to” 
books for commercial arithmetic focused on worked 
examples.
6The term “mathematical scholars” is intended to suggest 
the difference between present-day mathematicians and 
some of those nineteenth-century contributors. The lat-
ter included professors of mathematics such as Charles 
Davies, whose mathematical activity was not centered 
on research. 
7See the supplementary online material at http:// 
lipingma.net/math/math.html for more details. 

8This problem is: “God vouchsafed that he should be a boy 
for the sixth part of his life; when a twelfth was added, 
his cheeks acquired a beard; He kindled for him the light 
of marriage after a seventh, and in the fifth year after 
his marriage He granted him a son. Alas! late-begotten 
and miserable child, when he had reached the measure 
of half his father’s life, the chill grave took him. After 
consoling his grief by this science of numbers for four 
years, he reached the end of his life”. Using the definition 
system, a solution is obtained from (5 + 4) ÷ (1/2 − 1/6 − 
1/12 − 1/7) = 84.
9There is no evidence that the definition system in Chi-
nese elementary mathematics was adopted directly from 
the U.S.
10Primary Mathematics 5A Workbook (3rd ed.), 1999, 
Curriculum Planning & Development Division, Ministry 
of Education, Singapore, p. 70.

http://lipingma.net/math/math.html
http://lipingma.net/math/math.html
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in middle school. This group of basic laws together 
with the definition system forms a theory of school 
arithmetic.

Second, types of word problems were intro-
duced that described quantitative relationships 
in contexts, such as the relationship of distance, 
time, and velocity. These problem types came from 
ancient civilizations such as Rome and China and 
reflected an approach to mathematics different 
from that of Euclid.14 The theory of school arith-
metic established by following the approach of the 
Elements emphasizes rigorous reasoning, but these 
word problems provide prototypical examples 
of quantitative relationships. Solving variants of 
these problems promotes flexible use of these re-
lationships. These types of word problems rarely 
appeared in late nineteenth-century U.S. elemen-
tary textbooks, but elementary textbooks in China, 
Russia, and perhaps other countries introduce 
them systematically. To solve these word problems 
by analyzing the quantitative relationships on the 
reasoning within the theory is a supplement and 
a contrast. The supplement comes from seeing a 
different approach to mathematics. The contrast 
comes from the differences in the two approaches 
and underlying mathematical traditions. Moreover, 
it broadens students’ thinking and enriches the 
mathematical content.

Third, the pedagogy of school arithmetic de-
veloped further. The definition system of school 
arithmetic that we see in late nineteenth-century 
U.S. textbooks was presented with rigorous word-
ing and in logical order. Although it was rigor-
ous according to the discipline of mathematics, 
as presented it was too abstract for elementary 
school students. That might be a reason why the 
construction of the theory of school arithme-
tic stopped in early twentieth-century America. 
However, with many years of effort, China and 
some other countries have found instructional 
approaches for teaching school arithmetic that 
has this underlying theory. These approaches 
vary in at least three ways: in the order of the 
content, how it is represented, and the design of 

Although people educated in the U.S. could 
solve this problem with nonarithmetic approaches, 
no one knew how to solve it using an arithmetic 
equation, such as

                200 ÷ [3/5 – 1/4 × (1 – 3/5)] 
             = 200 ÷ 1/2 
             = 400   Answer: 400 tarts

Because concepts other than “unit” in the 
definition system are defined in terms of earlier 
concepts, the later a concept is defined, the more 
previously defined concepts it may rely on. The 
concept needed to solve the tarts problem oc-
curs in the last section of the definition system. 
People whose elementary mathematics instruction 
included all the concepts of the definition system 
are prepared to solve this problem. Otherwise 
they are not prepared to solve this problem using 
an arithmetic equation. Thus, testing elementary 
students after they learn fractions by asking them 
to solve this word problem provides evidence of 
whether or not their country still uses a fairly com-
plete definition system.11 This definition system 
underlies elementary mathematics in Singapore; 
thus, at the end of elementary school, Singapore 
students are prepared to solve this problem 
using arithmetic. In the U.S., not only elementary 
students but their teachers and the educators of 
those teachers are not able to solve the problem 
with arithmetic. This suggests that the definition 
system has, at least, decayed in the U.S.

The Construction of School Arithmetic
Examination of U.S. elementary textbooks suggests 
that, after the end of the nineteenth century, when 
most of the definition system was established, 
the development of school arithmetic as a subject 
came to a halt.12 However, in some other countries, 
the development of school arithmetic continued. 
From the content of Chinese elementary math-
ematics we can see three kinds of later evolution.

First, introduction of the basic laws: commuta-
tive, associative, distributive, and compensation 
laws.13 These do not appear in nineteenth-century 
U.S. arithmetic textbooks. With these laws, expla-
nations for computational algorithms become 
more concise, and applications of the algorithms 
become more flexible. Knowledge of these laws 
also forms a good foundation for learning algebra 

11The time at which students are asked this question, 
just after learning division by fractions, is very impor-
tant. Prior to that, students have not learned the entire 
definition system. Later, students will learn to solve such 
problems using algebra.
12In some early twentieth-century writings in U.S. math-
ematics education, such as Buckingham’s Elementary 
Arithmetic: Its Meaning and Practice, we see evidence of 
further exploration of the definition system. However, I 
have found no evidence that such explorations affected 
elementary mathematics textbooks.

13Like the definition system, the basic laws are presented 
with words, numbers, and the signs introduced in the 
definition system, with no symbols beyond arithmetic (let-
ters are not used). For example, the commutative law for 
addition may be presented as “If two addends interchange 
their place, the sum does not change,” with an example 
such as 3 + 2 = 5, 2 + 3 = 5. The compensation law for 
addition may be presented as “If one addend increases 
by an amount and the other addend decreases by the 
same amount, the sum does not change,” with an example 
such as 5 + 4 = 9, (5 + 2) + (4 – 2) = 9. This feature of not 
using language beyond arithmetic is significant in terms 
of ensuring that the students’ learning task does not go 
beyond their intellectual readiness. 
14 See the supplementary online material at http://
lipingma.net/math/math.html for more details.

http://lipingma.net/math/math.html
http://lipingma.net/math/math.html
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that the 1989 NCTM Curriculum and Evaluation 
Standards for School Mathematics and the 1985 
California Mathematics Framework “drew on the 
same research, commitments, and ideas” (2003, 
p. 26). What we will discuss here, however, is an 
even earlier, more profound, California influence 
on national mathematics education. This is the 
fundamental change in the structure of elemen-
tary mathematics content initiated by the first 
California mathematics framework known as “The 
Strands Report”.
The First California Mathematics Framework: 
Creation of Strands Structure
In October of 1957 the Soviet Union launched 
Sputnik. This unusual event caused the U.S. to 
reflect on its science and mathematics education. 
In 1958 the National Science Foundation funded 
the School Mathematics Study Group (SMSG), led 
by the mathematician Edward Begle, to promote 
the reform of U.S. mathematics curriculum, later 
known as the “new math”.

In 1960 California formed the State Advisory 
Committee on Mathematics, with Begle as its 
chief consultant to launch the statewide reform 
of mathematics education. The committee was 
composed of three subcommittees. The first sub-
committee on “Strands of Mathematical Ideas” 
consisted mainly of mathematics professors. 
Its charge was to decide the new mathematical 
structure of the new curriculum. The charge of 
the other two subcommittees was to implement 
the new curriculum: one to decide how to prepare 
teachers for the new curriculum and the other to 
investigate “the more recent ‘new’ mathematics 
programs that have attracted national attention” 
and study “commercially produced materials that 
could be used profitably to supplement the state 
adopted materials” (p. v).

In 1963 the reports from the three commit-
tees were published as Summary of the Report 
of the Advisory Committee on Mathematics to the 
California State Curriculum Commission. Because 
its main section was “The Strands of Mathemat-
ics” the whole report was known as “The Strands 

exercises. “Three approaches to one-place addition 
and subtraction” [Ma, n. d.] gives examples of how 
these three aspects can work together to introduce 
concepts defined within a system and basic laws to 
first-grade students.

After these changes—introduction of basic 
laws, introduction of prototypical problems, and 
pedagogical advances—the construction of school 
arithmetic as a subject was basically complete. It 
consisted of four components:

•Arabic numerals and notation for whole num-
bers, fractions, and operations on them, inher-
ited from commercial arithmetic.

•Definition system augmented by basic laws.
•Prototypical word problems with variants.
•Instructional approaches.

This school arithmetic was self-contained: it 
had an underlying theory following the approach 
of the Elements. It was open: although based on 
the Euclidean tradition of Greek mathematics, it 
included mathematical traditions of other civili-
zations. It was teachable: developments in peda-
gogical approaches created a school arithmetic 
that was learnable by following the character of 
students’ thinking and leading students step by 
step to progressively more abstract thinking.

In the U.S., although much of the definition 
system had been established by the end of the 
nineteenth century, during several decades of the 
progressive education movement the three types 
of developments discussed above did not occur in 
significant ways. Thus in the U.S. the construction 
of school arithmetic as a subject was never really 
completed. In other words, a well-developed school 
arithmetic never really existed as a subject to be 
taught to U.S. children.

U.S. Strands Structure: Origin, Features, and 
Development
Although it never had a well-developed school 
arithmetic, after the beginning of elementary 
education, arithmetic was the core of elementary 
mathematics in the U.S. for almost one hundred 
years. However, today’s U.S. elementary mathemat-
ics has a different type of structure. When did this 
change happen? How did it evolve into the struc-
ture shown in Figure 1B? What did this change in 
structure mean to U.S. elementary mathematics? 
We begin with the creation of this structure in the 
first California mathematics framework.

During the past few decades, the relationship 
between mathematics education in California and 
the rest of the nation has been intriguing. In some 
sense, we can say that California has been the 
forerunner of the rest of the United States. In her 
book California Dreaming: Reforming Mathemat-
ics Education Suzanne Wilson mentions several 
times how mathematics reform in California has 
influenced that of the entire nation. She points out 

Figure 3. The structure suggested by the First 
Strands Report.
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as one-to-one correspondence, place value, num-
ber and numeral, and Cartesian product (CSED, 
pp. 4–13).16 The report claimed that these fifteen 
concepts were important but did not explain how 
they were related. The other seven strands were 
discussed in a similar way.

From the earlier quotation, we can see that the 
authors of “The Strands Report” intended to ex-
press all of elementary mathematics in terms of a 
few basic concepts and thus unify its content. How-
ever, realization of this idea was not widespread in 
U.S. elementary education. In this way, the newly 
introduced concepts from advanced mathematics 
did not unify elementary mathematics, although 
the earlier definition system of school arithmetic 
was officially abandoned. Since then, the concepts 
in U.S. elementary mathematics education have 
never had an underlying definition system that 
played the same role as the earlier one.

Today, when we read “The Strands Report”, 
we should admit that it has some interesting and 
inspiring ideas and discussions. We can also un-
derstand that its authors, facing concerns about 
national security at that time, wished to introduce 
concepts from advanced mathematics. However, 
maybe because of insufficient time or other rea-
sons that we don’t know, they didn’t even make 
an argument for the new approach. Why change 
the previous elementary mathematics curriculum 
with arithmetic at its center to this curriculum with 
eight strands?17 What is the advantage of doing 
so? Why these eight strands and not others? Why 
were these eight strands the most appropriate for 
making elementary mathematics into “one indivis-
ible whole”?

“The Strands Report” presented the wish of uni-
fying elementary mathematics curriculum into an 
indivisible whole; however, its structure militated 
against this aim. It did not present evidence that 
the eight strands would form an indivisible whole. 
Moreover, because its structure consisted of jux-
taposed categories without evidence to show that 

Report”. Later, its official name became the First 
California Mathematics Framework. In this report, 
the arithmetic-centered structure of elementary 
mathematics was replaced by a different type of 
structure consisting of juxtaposed components,  
creating the strands structure.

“The Strands Report” began:

The curriculum which we recom-
mend departs but little from the top-
ics normally studied in kindergarten 
and grades one through eight, topics 
which long ago proved their enduring 
usefulness. But it is essential that this 
curriculum be presented as one indivis-
ible whole in which the many skills and 
techniques which compose the present 
curriculum are tied together by a few 
basic strands of fundamental concepts 
which run through the entire curricu-
lum. (pp. 1–2, emphasis added)

According to the report, these “basic strands” 
are:15

1. Numbers and operations 
2. Geometry 
3. Measurement 
4. Application of mathematics
5. Sets 
6. Functions and graphs 
7. The mathematical sentence 
8. Logic

The idea of tying together elementary math-
ematics content with these eight strands meant 
a twofold revolution in the elementary math-
ematics curriculum. One was the revolution in 
the components of content. Arithmetic was no 
longer considered to be the main content. Instead, 
concepts from advanced mathematics such as 
sets, functions, and logic were introduced into 
elementary mathematics. Second was a revolution 
in the structural type, establishing a new strands 
structure for elementary mathematics.

Each of the eight strands was represented as a 
few concepts from a branch of mathematics but 
not as a self-contained subject. Although the re-
port discussed a few important concepts for each 
strand, there was no evidence that these important 
concepts sufficed to form a system that provided 
explanations for the operations of elementary 
mathematics. For example, the strand “Numbers 
and operations”, which might be considered clos-
est to arithmetic, included fifteen concepts, such 

16The fifteen concepts in the Numbers and operations 
strand are: One-to-one correspondence (p. 4), Place value 
(p. 5), Number and numeral (p. 6), Order: The number 
line (p. 6), Operations: Cartesian-product (pp. 7–8), Array  
(p. 7), Closure (p. 8), Commutativity (p. 9), Associativity  
(p. 9), Identity elements—zero and one (p. 10), Distributiv-
ity (p. 10), Base (p. 11), The decimal system (p. 12), Square 
root (p. 13).
17The report says: “The arithmetic…must not appear 
to the pupil as a sequence of disconnected fragments or 
computational tricks. Some of the important unifying 
ideas are discussed briefly in the following section of 
this report” (p. 4). The report did not mention that there 
was a self-contained definition system underlying late 
nineteenth-century U.S. elementary mathematics. From 
this, I infer that the authors of the report were not aware 
of the definition system.

15The report may have drawn on two intellectual re-
sources: Bruner’s Process of Education (1960) and Nicolas 
Bourbaki’s Elements of Mathematics. Discussion of their 
possible influence on the first Strands Report is beyond 
the scope of this article.
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these categories were the only appropriate choice, 
changes in the strands were unavoidable. In fact, 
such changes occurred only a few years later and 
have continued to occur.

The direct result of representing elementary 
mathematics as a strands structure is that arith-
metic stopped being its core. “The Strands Report” 
put some “arithmetic topics” into the Numbers and 
operations strand and some into other strands. 
From that point on, school arithmetic, which had 
stopped its development in the early twentieth 
century, officially disintegrated.
The Second California Mathematics Framework: 
First Change in the Strands
Four years later, in 1967, the California State Math-
ematics Advisory Committee submitted its second 
Strands Report. This was formally published in 
1972 as The Second Strands Report: Mathemat-
ics Framework for California Public Schools. In 
this second report, the number and names of the 
strands changed.

The “Mathematical sentence” strand was re-
moved. Two new strands, “Statistics and probabil-
ity” and “Problem solving”, were added, changing 
the number of strands from eight to nine. At the 
same time, the “Logic” strand was changed to “Log-
ical thinking”. No explanation of these changes was 
given in the document.

As we have seen, the strands structure allowed 
an unlimited number of possibilities for changing 
the names, number, content, and features of the 
strands. After this, U.S. elementary mathematics 
lost its stability and coherence. After only four 
years, the same mathematics professors who 
wrote the first Strands Report changed the strands 
without explanation. In a strands structure, no 
strand was self-contained; moreover, the relation-
ship among the strands was such that individual 
strands could be readily changed. Anyone writing 
a framework could easily change the content of 
mathematics education by changing a strand. 
Later, when the main authors of the mathematics 
framework were not mathematicians but teachers 
and cognitive scientists, they retained its structure, 
but changed its strands to fit their views of math-
ematics education.

The “Back to Basics” Framework: Same Structure, 
Different Vision
Three years after the publication of the second 
Strands Report, the direction of mathematics 
education in California changed dramatically. 
The education department decided to give up 
the “new math” promoted in the two earlier 
frameworks and emphasize “the acquisition of 
basic mathematics skills” (CSDE, 1975, Preface). 
An ad hoc Mathematics Framework Committee 
was formed, led by a high school teacher. In 1975 
the third California mathematics framework 
was published.18 The Superintendent of Public 
Instruction wrote in the foreword that although                                                            
this new framework could be called a “post-new 
math framework”, he himself preferred to call it 
the “basics framework”. He emphasized that “the 
contents reflect the concerns of teachers rather 
than those of mathematicians.” It is obvious that 
the vision of this framework is fundamentally 
different from that of the earlier two. The vision 
of the mathematicians who wrote the first two 
Strands Reports was abandoned. Mathematicians 
were no longer the leaders in writing frameworks.

As a sign of the end of “new math”, the “Sets” 
strand was removed. The new framework com-
bined “Problem solving”, the last strand of the pre-
vious framework, with its fourth strand “Applica-
tion of mathematics”. Two strands had their names 
changed: “Numbers and operations” changed to 
“Arithmetic, numbers and operations”, and “Func-
tions and graphs” changed to “Relations and func-
tions” (see Figure 4).

Another type of change in the “basics framework” 
was the way in which objectives were presented. 
The first framework had abandoned the traditional 
presentation of content by grade, instead 

Figure 4. Changes in the strands.

First Strands Report, 1963

1.   Numbers and operations
2.   Geometry
3.   Measurement
4.   Application of mathematics
5.   Functions and graphs
6.   Sets
7.   The mathematical sentence
8.   Logic

Second Strands Report, 1972

1.   Numbers and operations
2.   Geometry
3.   Measurement
4.   Applications of mathematics
5.   Statistics and probability
6.   Sets
7.   Functions and graphs
8.   Logical thinking
9.   Problem solving

“Basics Framework”, 1975

1.   Arithmetic, numbers and operations
2.   Geometry
3.   Measurement
4.   Geometric intuition
5.   Problem solving and applications
6.   Probability and statistics
7.   Relations and functions
8.   Dosposition to model
9.   Logical thinking

18From this version on, California frameworks addressed 
grades K through 12. In this article I discuss only the 
aspects of the frameworks that pertain to elementary 
mathematics.
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drill and factual recall. With the advent 
of low cost, high performance micro-
processors and calculators, it becomes 
possible for computations to be done 
more accurately and in less time than 
in the past. This allows more time for 
problem solving, the major focus of 
the mathematics curriculum. (CSDE, 
1982, p. 75)                                                               

To emphasize the importance of problem solv-
ing, the addendum took one strand from the pre-
vious framework and made it an umbrella for the 
other strands, which were called “skill and concept 
areas” to emphasize their subordinate role (CSDE, 
1982, p. 59). This idea was emphasized by a figure 
(see Figure 5).  

The approach of the 1980 Addendum differen-
tiated the strands, making some more important 
than others. This approach was continued in the 
next framework and influenced the 1989 NCTM 
Curriculum and Evaluation Standards.

1985 California Framework and 1989 NCTM 
Curriculum and Evaluation Standards : Creation 
of Subitems
The 1985 California framework and the 1989 
NCTM standards shared a similar new vision of 
mathematics education. The new, exciting vision 
presented in these two documents was to let 
every student, not only academic elites, acquire 
“mathematical power” (CSDE, 1985) and become 
“mathematically literate” (NCTM, 1989).

As mentioned earlier, during the new math 
movement mathematicians intended to use funda-
mental mathematical concepts such as “set” and 
“function” to explain the content of elementary 
mathematics. However, the 1980s round of reform 
seems to have been influenced by cognitive sci-
ence. Terms related to cognition, such as “ability”, 
“cognition”, “number sense”, “spatial sense”, “to 
communicate”, “to understand”, appear frequently 
in these documents.

The 1985 California framework stated:

Mathematical power, which involves 
the ability to discern mathemati-
cal relationships, reason logically,  
and use mathematical techniques 
effectively, must be the central concern 
of mathematics education and must be 
the context in which skills are devel- 
oped…. The goal of this framework is 
to structure mathematics education so 
that students experience the enjoyment 
and fascination of mathematics as they 
gain mathematical power. (pp. 1–2)

The 1989 NCTM standards suggested that to 
become mathematically literate involved five goals 
for students:

1. to value mathematics 

combining the content of grades K–8.19 The ba-
sics framework used a different arrangement 
and presented the K–8 objectives for each strand 
by grade bands: K–3, 4–6, 7–8 (see its Appen- 
dix A). A third type of change was the creation 
of two kinds of strand categories: “strands” and 
“content areas” (1975, CSDE, p. 11).

Between the “new math” and “back to basics” 
eras, the vision of mathematics education changed 
fundamentally. However, the structure created by 
the mathematicians who wrote the first framework 
remained. This structure allows fundamental 
changes in vision to be presented simply by chang-
ing the strand categories.
1980 Addendum to the Framework: Problem 
Solving above All
A few years after the “basics framework” was 
published, the California State Department of 
Education published Mathematics Framework and 
the 1980 Addendum for California Public Schools, 
Kindergarten through Grade Twelve, consisting 
of the “basics framework” together with an ad-
dendum. The number of pages in the addendum 
was four-fifths the number of pages in the frame-
work, in order to revise the vision of the “basics 
framework”:

As the result of the back-to-basics 
movement, there is a tendency by some 
educators to allocate too much time in 
mathematics classes to working with 

Figure 5. The 1980 Addendum emphasized problem 
solving (CSDE, 1982, p. 60).

19The first Strands Report said: “Definite grade place-
ment is not crucial. We must recognize that concepts are 
not mastered immediately but are built up over a period 
of time. It is therefore important that these notions be 
introduced as early as possible and be linked with the 
pupils’ mode of thinking. Above all we seek, to the limit 
of each pupil’s capability, his understanding of that uni-
fied mathematical structure which is the content of K–8 
mathematical study.” (CSDE, 1963, p. 2)
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are nine objectives. The 1985 framework had seven 
strands with forty-one objectives.

The NCTM 1989 standards used a similar struc-
ture. It set up thirteen standards:

Each standard starts with a statement 
of what mathematics the curriculum 
should include. This is followed by a 
description of the student activities 
associated with that mathematics and 
a discussion that includes instructional 
examples. (NCTM, 1989, p. 7)

Like the 1985 framework, the 1989 NCTM stan-
dards separated the thirteen standards into two 
groups. The first four standards formed one group 
shared by all the grades: “Mathematics as problem 
solving”, “Mathematics as communication”, “Math-
ematics as reasoning”, and “Mathematics as con-
nections”. The remaining nine standards formed a 
group related to content, and their names differed 
by grade band. For example, the names of the K–4 
standards were “Estimation”, “Number sense and 
numeration”, “Concepts of whole number opera-
tions”, “Geometry and spatial sense”, “Measure-
ment”, “Statistics and probability”, “Fractions and 
decimals”, and “Patterns and relationships”.

Similar to the 1985 framework, the 1989 NCTM 
standards had several objectives listed for each 
standard. Thus, both the 1985 framework and the 
1989 standards had two layers: items (strands or 
standards), each of which was followed by a bul-
leted list of more detailed subitems. In general, a 
teacher concerned about addressing the standards 
seems more likely to have attended to the bullets 
rather than to the more general strands or stan-
dards. For example, when a K–4 teacher sees the 
first standard, “Mathematics as problem solving”,  
he or she might think of one standard. When see- 
ing the five bullets listed for this standard, the 
teacher's attention may be attracted to these, 
because they are supposed to be implemented 
in teaching. Thus, the content and number of 
subitems may have a direct impact on classroom 
teaching.

Table 1 lists the thirteen standards and fifty-
six bullets of the K–4 standards (NCTM, 1989, pp. 
23–61).   

If one has the patience to read all fifty-six bul-
lets in Table 1, one will find that many descriptions 
are vague and the relationships of the bullets are 
not visible. Several items are hard to understand 
without further explanation,20 which the document 
does not give.

2. to become confident in their ability to do 	
	 mathematics 

3. to become mathematical problem solvers 
4. to learn to communicate mathematically 
5. to learn to reason mathematically

The authors were convinced that if students 
are “exposed to the kinds of experience outlined 
in the Standards, they will gain mathematical 
power” (p. 5).

The structural type of the NCTM standards 
was visibly influenced by the earlier California 
frameworks. Although the frameworks referred 
to “strands” or “areas” and the standards referred 
to “standards”, these items were organized in very 
similar ways. Via the NCTM standards, the strands 
structure that originated in the first California 
framework had a national impact. Wilson wrote:

The boundaries between the national 
and California discussions of mathe- 
matics education and its reform were 
porous and permeable. It was hard—as 
observers—to separate those discus-
sions and to determine where ideas 
originated…. Many California school-
teachers were part of the writing of and 
the reaction to the development of the 
NCTM 1989 Standards. (2003, p. 127)

Although it was based on the 1980 Addendum, 
the 1985 framework had a new kind of item: “major 
areas of emphasis that are reflected throughout 
the framework” (CSDE, 1985, p. 2), which occurred 
before the discussion of the strands. There were 
five of these areas:

1. problem solving 
2. calculator technology 
3. computational skills 
4. estimation and mental arithmetic 
5. computers in mathematics education

The 1985 framework changed some of the 
strands. “Problem solving/application” changed 
from a strand to a major area of emphasis and 
a new strand called “Algebra” was added. Some 
strands had their names changed: “Arithmetic, 
number and operation” to “Number”; “Relations 
and functions” to “Patterns and functions”; “Logi-
cal thinking” changed back to “Logic”; “Probability 
and statistics” to “Statistics and probability”. In 
this way, five major “areas of emphasis” plus seven 
“strands” or “areas” became the twelve parts of the 
strands structure in the new framework.

This framework created a new kind of strands 
structure that had items and subitems. Under 
each strand a list of student understandings and 
actions was given. Although they were stated as 
objectives, their content suggested a partition of 
each strand. For example, under “Number” there 
are seven objectives. Under “Measurement” there 

20Some examples occur in Standard 8: Whole number com-
putation which has as the last three of its four goals: relate 
the mathematical language and symbolism of operations 
to problem situations and informal language. Recognize 
that a wide variety of problem structures can be repre-
sented by a single operation. Develop operations sense.



1292   	 Notices of the AMS	 Volume 60, Number 10

Table 1. 1989 NCTM K–4 Standards and Bullets  

Standard 1: Mathematics as problem solving Standard 7: Concepts of whole number operations

1. Use problem-solving approaches to investigate and under-

stand mathematical content; 

28. Develop meaning for the operations by modeling and dis-

cussing a rich variety of problem situations; 

2. Formulate problems from everyday and mathematical situ-

ations;

29. Relate the mathematical language and symbolism of opera-

tions to problem situations and informal language;

3. Develop and apply strategies to solve a wide variety of 

problems; 

30. Recognize that a wide variety of problem structures can be 

represented by a single operation; 

4. Verify and interpret results with respect to the original 

problem; 

31. Develop operations sense. 

5. Acquire confidence in using mathematics meaningfully. Standard 8: Whole number computation

 

Standard 2: Mathematics as communication

32. Model, explain, and develop reasonable proficiency with 

basic facts and algorithms;

6. Relate physical materials, pictures, and diagrams to math-

ematical ideas;

33. Use a variety of mental computation and estimation 

techniques; 

7. Reflect on and clarify their thinking about mathematical ideas 

and situations;

8. Relate their everyday language to mathematical language 

and  symbols;

34. Use calculators in appropriate computational situations;

35. Select and use computation techniques appropriate to 

specific problems and determine whether the results are 

reasonable. 

9. Realize that representing, discussing, reading, writing, and 

listening to mathematics are a vital part of learning and 

using mathematics. 

Standard 3: Mathematics as reasoning

10. Draw logical conclusions about mathematics;

11. Use models, known facts, properties, and relationships to 

explain their thinking;

Standard 9: Geometry and spatial sense 

36. Describe, model, draw, and classify shapes;

37. Investigate and predict the results of combining, subdivid-

ing, and changing shapes;

38. Develop spatial sense;

39. Relate geometric ideas to number and measurement ideas. 

12. Justify their answers and solution processes;

13. Use patterns and relationships to analyze mathematical 

 situations; 

14. Believe that mathematics makes sense.

Standard 4: Mathematical connections

15. Link conceptual and procedural knowledge;

16. Relate various representations of concepts or procedures 

 to one answer;

17. Recognize relationships among different topics in mathe- 

 matics;

18. Use mathematics in other curriculum areas;

19. Use mathematics in their daily lives.

Standard 5: Estimation

20. Explore estimation strategies;

21. Recognize when an estimate is appropriate;

22. Determine the reasonableness of results;

23. Apply estimation in working with quantities, measurement,  

 computation, and problem solving.

Standard 6: Number sense and numeration

24. Construct number meanings through real-world experiences 

      and the use of physical materials;

25. Understand our numeration system by relating counting, 

      grouping, and place-value concepts

26. Develop number sense; 

27. Interpret the multiple uses of numbers encountered in their 

      real world.

Standard 10: Measurement

41. Understand the attributes of length, capacity, weight, mass, 

area, volume, time, temperature, and angle;

42. Develop the process of measuring and concepts related to 

units of measurement; 

43. Make and use estimates of measurement; 

44. Make and use measurements in problem and everyday 

situation.

Standard 11: Statistics and probability 

45. Collect, organize, and describe data;

46. Construct, read, and interpret displays of data;

47. Formulate and solve problems that involve collecting and 

      analyzing data;

48. Explore concepts of chance.

Standard 12: Fractions and decimals

49. Develop concepts of fraction, mixed numbers, and decimals;

50. Develop number sense for fractions and decimals;

51. Use models to relate fractions to decimals and to find 

equivalent fractions;

52. Use models to explore operations on fractions and decimals;

53. Apply fractions and decimals to problem situations.

Standard 13: Patterns and relationships

54. Recognize, describe, extend, and create a wide variety of 

patterns;

55. Represent and describe mathematical relationships;

56. Explore the use of variables and open sentences to express 

relationships.
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2000 “Problem solving” was sixth in the list of ten 
standards, suggesting a change in status.

In these two documents, items and subitems 
appeared as in previous documents, together with 
a new structural feature, sub-subitems. The 1999 
framework had five standards. Each standard had 
subitems, and each subitem had sub-subitems. 
The 2000 NCTM standards retained the structure 
of the 1989 standards, with each standard parti-
tioned into several goals. A new structural feature, 
however, was that under each content standard 
goal were listed several expectations. For example, 
in the pre K–2 grade band, the first standard, 
“Number and operation”, is partitioned into three 
goals. Together the three goals consist of twelve 
expectations. For pre K–2, the total number of 
goals for process standards and expectations for 
content standards is sixty-three. Thus, compared 
with the 1989 standards, although the number of 
standards was reduced, there was an increase in 
the number of the most specific items. The con-
tinued increases in the number of specific items in 
the strands structure may be an important reason 
why the U.S. elementary mathematics curriculum 
became broader and shallower.

In 2006, in order to change the “mile wide 
and inch deep” U.S. curriculum,21 NCTM made 
a significant move, publishing Curriculum Focal 
Points for Prekindergarten through Grade 8 
Mathematics (known as “Focal Points”), which 
provided “descriptions of the most significant 
mathematical concepts and skills at each grade 
level” (NCTM, 2006, p. 1). “Focal Points” adopted 
the approach of California’s 1999 framework of 
arranging content by grade rather than by grade 
band.

“Focal Points” gives three focal points for each 
year with detailed descriptions of each. This ap-
proach helps to emphasize a few ideas; however, 
given that the strands structure was retained, there 
is no single self-contained subject which serves as 
the core of the curriculum. The wide and shallow 
curriculum could become narrower because the 
number of items had been reduced, but narrowing 
does not automatically produce depth.

Conclusion

Notable Aspects of the Strands Structure: Not 
Stable, Not Continuous, Not Coherent
The big influence of the first California framework, 
“The Strands Report”, published during the new 
math movement, was to fundamentally change the 
structure of U.S. mathematics content from a core-
subject structure to a strands structure. During 
the past few decades, although the names of items 
changed from “strands” to “areas” to “standards”, 
the strands structure has remained. The damage 
this structure has caused to U.S. elementary math-
ematics education is the instability of content, 

The 1989 NCTM standards were intended to 
guide teachers’ mathematics teaching by providing 
standards for curriculum and assessment. But, in 
my opinion, whether the reader is a curriculum 
designer, assessment creator, or teacher, these 
fifty-six bullets will be overwhelming and eventu-
ally ignored. Here I must point out that the strands 
structure opened the door for the existence of this 
disconnected list.

In 1992 California published a new mathematics 
framework in order to make the content taught in 
California closer to that described in the NCTM 
standards. These, in turn, had been inspired by 
the previous California framework.

A major disadvantage of representing the goals 
of elementary mathematics instruction in terms 
of cognitive actions or behaviors related to math-
ematics is that implementation of such descrip-
tions is difficult. Of course mathematics learning 
is a cognitive activity. However, the descriptors 
of those cognitive activities are often vague and 
have multiple meanings, even for cognitive sci-
entists. For example, “developing number sense” 
(bullet 26) is an important goal of the 1989 NCTM 
standards. However, what is number sense? There 
are so many interpretations it is hard to choose. 
In his article “Making sense of number sense”, 
Daniel Berch noted, “Gersten et al. pointed out 
that no two researchers define number sense in 
exactly the same way. What makes this situation 
even more problematic, however, is that cognitive 
scientists and math educators define the concept 
of number sense in very different ways” (2005, 
p. 333). Then “after perusing the relevant literature 
in the domains of mathematical cognition, cogni-
tive development, and mathematics education,” 
Berch “compiled a list of presumed features of 
number sense” with thirty items, some of them 
quite different (2005, p. 334). To require teach-
ers to work towards teaching goals which are so 
vaguely defined is not practical.  

1999 California Framework, 2000 NCTM 
Standards: Establishment of Sub-subitems
In 1999 California published its sixth mathematics 
framework. In 2000 NCTM published its Principles 
and Standards for School Mathematics. The vision 
of these two documents differed from that of their 
three immediate predecessors. The computational 
skills deemphasized in the previous round of 
reform received more emphasis. The 1999 frame-
work arranged mathematical content by grades 
and changed “strands” to “standards”. The 2000 
NCTM standards reduced the previous thirteen  
standards to ten. The last five of these standards, 
which were similar to the first four standards of 
1989, were called “process standards”. The first 
five were called “content standards”. Thus, for 
example, in 1989, “Mathematics as problem solv-
ing” was first in the list of thirteen standards. In 

21See NCTM, 2006, p. 3, and Schmidt et al., 1997.
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learning to have continuity. This is an invisible but 
severe injury to students’ learning.

Incoherence among concepts. The many con-
cepts of the present-day U.S. elementary curricu-
lum do not cohere. Some come from current stan-
dards, and some remain from earlier standards. 
For example, although the new math movement 
has been dormant for a long time, some of its 
concepts remain in elementary education. For the 
meanings of the four operations on whole numbers 
and the concepts of addition and subtraction on 
whole numbers, the eleven models described by 
researchers who study children’s cognitive activity 
are popular. Concepts of multiplication on whole 
numbers include “repeated addition”, “equal-sized 
groups”, and various interpretations of “Cartesian 
product”. But concepts of the four operations on 
fractions are not described in ways that are con-
nected to these operations on whole numbers.

The field of mathematics education has noticed 
this incoherence. Almost all of the ten frame-
works and standards documents created since the 
1960s mention the idea of unification. However, 
this unification was never widespread in school 
mathematics during these decades. In my opinion, 
the largest obstacle to unification is the strands 
structure. In order to get their textbooks adopted, 
publishers need to demonstrate adherence to 
state frameworks or standards. This is often done 
by using their categories and organization.22 If  
curriculum materials adhere to the strands struc-
ture without further unification of the concepts, 
then unification becomes the responsibility of 
teachers. Teachers who are able to do this must 
(1) have a unified and deep knowledge of the disci-
pline of mathematics and (2) be very familiar with 
features of student learning. It is not impossible 
to produce people who meet these requirements, 
but it has a very high social cost. The quantity 
of elementary school mathematics teachers is so 
large that producing sufficient numbers of such 
people is an extremely difficult problem.

I think that readers will agree that these fea-
tures—instability, discontinuity of teaching and 
learning, and incoherence among concepts—have 
damaged U.S. elementary student learning. These 
are inherent in the strands structure.
To Reconsider School Arithmetic and Its 
Potential: One Suggestion for U.S. Mathematics 
Education
Is there any subject that can unify the main 
content of elementary mathematics: the four op-
erations on whole numbers and fractions, their 
algorithms, and quantitative relations? Yes, this 
is school arithmetic. U.S. scholars contributed to 
this arithmetic as it was being constructed, but it 

discontinuity in instruction, and incoherence in 
concepts.

The title, the content, and the number of items 
forming elementary mathematics content created 
by some people (for example, a committee) can 
easily be changed by a group of other people (for 
example, another committee). For instance, the ten 
framework and standards documents discussed 
earlier almost always had different names for 
items. There were ninety-four different names 
for items on the first layer. Of these, twenty-eight 
names were used only once, and fourteen names 
were used only twice. The most stable were “Ge-
ometry” and “Measurement”. These appeared in 
six documents.

Instability. The instability caused by the strands 
structure is certainly a cause of complications for 
practitioners such as teachers, textbook authors, 
and test developers. Each change in number, 
name, and content of items, even changes in their 
order, requires a response, sometimes a response 
significantly different from previous responses. 
Such changes every few years are difficult, even for 
experts in mathematics education, not to mention 
elementary teachers who teach several subjects. 
Such frequent changes even affect parents, mak-
ing it difficult for them to tutor their children in 
elementary mathematics.

Another damage caused by instability is that 
experience cannot accumulate. For the develop-
ment of any field, accumulation over time is very 
important. This requires the content of the field to 
be basically stable. If it is always changing, aban-
doning or creating content, it is hard for us to keep 
meaningful things. The content and pedagogy of 
core-subject elementary mathematics were devel-
oped and formed over a long period. The terms 
in the definition system of school arithmetic have 
been used for several hundred years. Following the 
approach of the Elements, which is two thousand 
years old, mathematical scholars revised the defi-
nitions of these terms and established a definition 
system. Then, based on this definition system, 
they established a theory of school arithmetic. 
After several more decades, textbook authors and 
teachers developed a way to teach school arithme-
tic based on this theory to elementary students. 
Part of this approach is in the textbooks, part is 
in journal articles, and part is in the mouths and 
ears of elementary teachers. This accumulation of 
knowledge and experience is not easily noticed, 
but can only occur in a relatively stable situation.

Discontinuity. As mentioned before, in the core-
subject structure the continuity of instruction was 
protected and ensured. In the strands structure, 
the content of instruction needs to jump from item 
to item. Because of these jumps and because so 
many items are to be addressed at the same time, it 
is impossible for U.S. elementary school students’ 

22For an example, see Ginsburg, Klein, & Starkey, 1998, 
pp. 437–438.
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most had a sound understanding of elementary 
mathematics. A subgroup of very experienced 
teachers (about 10 percent of my sample) had what 
I called a “profound understanding of fundamen-
tal mathematics.” Their profound understanding 
was acquired by studying and teaching school 
mathematics with this arithmetic as its core.23 

What I called “fundamental mathematics” is more 
accurately described as the foundation for learning 
mathematics. School arithmetic is the cornerstone 
of this foundation. Therefore, I suggest that U.S. 
elementary mathematics education reconsider 
school arithmetic, its content, and its potential in 
mathematics education.
Chinese Standards: A Cautionary Tale
In 2001 and 2012 China published mathematics 
curriculum standards (called, respectively, “ex-
perimental version” and “2011 version”). Reading 
these curriculum standards, we can see the au-
thors’ intent to have a Chinese character; however, 
it is obvious that they have borrowed significant 
ideas,  wording, and writing style from the 1989 
NCTM standards.

One of my main concerns is that Chinese cur-
riculum standards, like the first California frame-
work of 1963, may radically change the structure 
of Chinese elementary mathematics. The 2001 
Chinese standards have four categories of general 
goals. These four categories and four areas are 
very similar to the two groups of standards in 
the 1989 Curriculum and Evaluation Standards. 
In this way, the previous Chinese core-subject 
elementary mathematics has been changed to a 
strands structure.

The eight items have the same noticeable 
features as the U.S. strands items: (1) there is no 
item that is a self-contained subject and (2) the 
relationships among the items are not described. 
Therefore, although there are phrases such as 
“connect”, “tightly connected”,  and “interwoven”, 
these phrases are used in a way that is similar to 

was left to other countries 
to complete this process and 
make it teachable.

Since the early 1960s, 
from the new math until 
today, in U.S. elementary 
mathematics I see a trend of 
pursuing advanced concepts 
such as set theory, number 
theory, functions, and ad-
vanced cognitive abilities 
such as problem solving, 
mathematical thinking, and 
“thinking like a mathema-
tician.” During recent de-
cades, efforts have been 
made to put algebra content 
into early grades. It seems that only by pursuing 
those advanced concepts and abilities can the 
quality of school mathematics be raised. However, 
together with the intent to pursue advanced con-
cepts and cognitive abilities, we see “math phobia” 
among teachers and students.

One reason that U.S. elementary mathematics 
pursues advanced ideas is that the potential of 
school arithmetic to unify elementary mathematics 
is not sufficiently known. This is a blind spot for 
current U.S. elementary mathematics. One popular, 
but oversimplified, version of this trend is to con-
sider arithmetic to be solely “basic computational 
skills” and consider these basic computational 
skills as equivalent to an inferior cognitive activ-
ity such as rote learning. Thus for many people 
arithmetic has become an ugly duckling, although 
in the eyes of mathematicians it is often a swan.

I would like to mention two things: (1) Some 
countries considered to have good mathematics 
education, such as Singapore, have elementary 
mathematics with arithmetic as its core subject; 
(2) The Russian elementary mathematics textbooks 
with algebraic content that have attracted atten-
tion from those concerned about U.S. elementary 
mathematics have an underlying theory of school 
arithmetic from grade 1 onward. The algebra con-
tent in the Russian elementary textbooks available 
in the U.S. is founded on this underlying theory.

The precursor of school arithmetic was “com-
mercial mathematics”, a collection of algorithms 
without explanations for computing operations 
on whole numbers and fractions. This may not 
qualify as mathematics; however, after scholars 
built a theory in the manner of the Elements, 
commercial mathematics was reborn as a sub-
ject that embodied mathematical principles. The 
profound understanding of fundamental math-
ematics that I discuss in my book [Ma, 1999] is 
an understanding of this reborn arithmetic from 
a teacher’s perspective. The Chinese elementary 
teachers that I interviewed for my book Knowing 
and Teaching Elementary Mathematics had not 
studied any advanced mathematics. However, 

2001 Chinese Standards

1.   Number sense
2.   Symbol sense
3.   Spatial concepts
4.   Concept of statistics
5.   Disposition to apply mathematics
6.   Reasoning ability

2011 Chinese Standards

1.   Number sense
2.   Disposition to attend to symbols
3.   Spatial concepts
4.   Geometric intuition
5.   Data analysis concepts
6.   Computational ability
7.   Reasoning ability
8.   Disposition to model
9.   Disposition to apply mathematics
10. Disposition for innovation

23 See Chapter 6 of [Ma, 1999].

Figure 6. Changes in Chinese Standards.
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the “unify” and “consistent” discussed before; 
that is, they have no concrete referent. In this way  
Chinese elementary mathematics may follow U.S. 
elementary mathematics and step by step become 
unstable, inconsistent, and incoherent. In fact, the 
problems of the strands structure have already 
appeared in China.

We must note that the influence of structural 
change will be deep and long. Visions of education 
can be adjusted. Teaching methods can be revised. 
But if the structure of the subject to be taught 
decays, it is hard to restore it. No matter what 
direction mathematics education reform takes, 
we should not ignore questions about changes in 
the structure of the subject as it is organized and 
presented to teachers, curriculum designers, as-
sessment developers, and others concerned with 
mathematics education.
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